5.3 Data Manipulation: SQL 231

Example 5.18

(a) *‘Find the names and the rate of pay of all employees who are not alio-
cated a duty.’’ This query can be expressed in SQL using the not exists set
operator.

select Name, Pay_Rate

from EMPLOYEE Name | Pay_Rate
Wllleel; l:ot exists Parn 4%
e Pat 4.70
from DUTY_ALLOCATION Tulie 1450
where EMPLOYEE.Empl_No = .

DUTY_ALLOCATION.Empl_No)

In this example, for each employee tuple from the EMPLOYEE relation,
the not exists clause is evaluated. If there is at least one tuple in DUTY_
ALLOCATION for that employee, the second select statement produces a
nonempty result whereby the not exists expression evaluates to the false
value. The tuple is not included in the result, which is shown above.

The query can also be expressed using not in, as illustrated below:

select EMPLOYEE.Name, EMPLOYEE.Pay_Rate
from EMPLOYEE
where EMPLOYEE.Empl_No not in
(select DUTY_ALLOCATION.Empl_No
from DUTY_ALLOCATION)

(b) ““Find the names of employees who are assigned to all positions that
requite a chef’s skill.”” The tuple calculus expression for this query can be
written as: :

{e[Name]le ¢ EMPLOYEE /\
\/ p(p € POSITION A\ p(Skill] = 'chef’
— 3d (d e DUTY_ALLOCATION A
d[Posting_Nol = p[Posting_No} /\
e[Empl_No] = d[Empl_No)))}

Using \yx(f) = —3x(—f), we can rewrite the tuple calculus expression as:

{e[Name}le e EMPLOYEE N\
=13p(—(p € POSITION A p[Skill] = 'chef’
— 3d (d ¢ DUTY_ALLOCATION A
d[Posting_No] = p[Posting_No] N\
e[Empl_No] d[Empl_No))))}

An alternate method of writing this query without the logical implication is
to replace f —g by its equivalent form —f \/ g to give the following expres-
sion: :

{e[Name]le ¢ EMPLOYEE A
=13p(—(—(p € POSITION A p[Skill] =
‘chef’)
V/ 3d (d e DUTY_ALLOCATION A\
d[Posting_No) = p[Posting_No] /\
e[Empl_No] = d[Empl_No))))}

232 Chapter S Relational Database Manipulation

Union

Example 5.19

which is equivalent to:

{e[Name]le € EMPLOYEE N\
—3p(p € POSITION N\ p[Skill] = 'chef’
A —3d (d e DUTY_ALLOCATION N\
d[Posting_No] = p[Posting_No] /\
e[Empl_No] = d[Empl_Nol))}

This expression can be converted to SQL using not exists:

select e.Name
from EMPLOYEE e
where not exists
(select p.Posting_No
from POSITION p
where p.Skill == 'chef’
and not exists
(select d.Empl_No
from DUTY_ALLOCATION d
where d.Posting_No = p.Posting_No
and e.Empl_No = d.Empl_No))

Here the first (outer) nested subquery finds the positions requiring a chef’s
skill. For each such position, the second (inner) nested subquery finds if the
employee whose name is to be output is assigned to that position. If the
result of the second nested subquery is empty (i.e., the employee being
considered is not assigned to a position requiring the skill of a chef), the
second not exists evaluates to true, causing the first not exists to evaluate to
false, and the employee is not selected. In effect, we are saying that for
those employees whose names are to be output, if there exists a position
requiring a skill of chef, then there exists a tuple in DUTY_ALLOCATION
where this position is assigned to that employee. If these combined tests
evaluate to a true value, the attribute Name of the employee is output. For
our sample database, the result of this query is (Pierre). We will get identi-
cal results even if a tuple such as (350, 123472, 19860420,1) were inserted
in the DUTY_ALLOCATION relation. B

The traditional set theory union operator is union. Duplicates are removed from the
result of a union.

*‘Get employees who are waiters or work at Posting_No 321.”

(select Empl_No

from EMPLOYEE Empl_No

where Skill = 'waiter’)

union 123456
(select Empl_No 123461

‘from DUTY_ALLOCATION
where Posting No = 321 ®

5.3 Data Manipulation: SQL 233

Minus

The traditional set theory difterence operator is minus.

Example 5.20 (a) “‘Get employee numbers of persons who work at Posting_No 321, but
don’t have the skill of waiter’’. This query, which uses the minus operator,
and its results are shown below: :

(select distinct Empl_N~

from DUTY_ALLOCATION Empl_No
where.Postmg_No = 321) 123461
minus
(select Empl_No
from EMPLOYEE

where Skill = 'waiter')
(b) “‘Get a list of employees not assigned a duty.”

(select Empl_No
from EMPLOYEE)
minus
(select Empl_No
from DUTY_ALLOCATION) B

Intersect

The traditional set theory set intersection operator is intersect.

Example 5.21 “‘Get a list of the names of employees with the skill of chef who are as-
signed a duty.”

select Name
from EMPLOYEE Name
where Empl_No in .
((select Empl_No Pierre
from EMPLOYEE
where Skill = ’chef’)
intersect
(select Empl_No
from DUTY_ALLOCATION))

The result for the sample database of Figure 5.4 is given above. W

5.3.6 cCategorization

It is sometimes necessary to classify a relation into a number of ‘groups. Each such
group of tuples has a certain common property. Aggregation functions such as aver-

234

Chapter 5 Relational Database Manipulation

age, sum, and so on can be applied to each group instead of to the entire relation.
SQL provides the group by function to allow data to be classified into categories.
The aggregation functions are performed separately for each category or group. Each
element in the list attached to the select clause oi the select statement with the group
by function must have a single value per group. The having option can be added to
the group by function to specify a predicate to eliminate those elements that do not
satisfy the predicate. The having option must have only one value for each group.
The where clause could be used to specify predicates that would select those tuples
of the relation to be considered in the categorization.

The having option usually appears with the group by function. If the having
option appears without the group by function, the entire relation is treated as a single
group.

Example 5.22 Consider the sample database given in Figilrcs 5.2 and 5.4.

(a) The following SQL query generates the total charge for table 12 for the
date 19860419. The result of this query for our database is the tuple (9234,
19860419, 26.00).
select BILL.Bill#, BILL.Day, sum(MENU.Price*ORDR.Qty)
from BILL, MENU, ORDR '
where BILL.Bill# ORDR.Bill#
and ORDR.Dish# = MENU.Dish#
and BILL.Table# = 12
and BILL.Day = 19860419
group by BILL.Bili#, BILL.Day

We illustrate the group by function and the having option using the follow-
ing queries requiring the categorization of a relation or selected tuples of the
relation.

(b) ““Get a count of different employees on each shift.”’

select Shift, count (distinct Empl_No) :
from DUTY_ALLOCATION Shift count

group by Shift

1 4
2 3
3 1

For the DUTY_ALLOCATION relation of Figure 5.4, the result of this
statement is as shown above.

(c) “‘Get employee numbers of all employees working on at least two

dates.”’
select Empl_No
from DUTY_ALLOCATION Empl_No
group by Empl_No A
having count (*) > | 123458
123461
123471

§.3 Data Manipulation: SQL 235

For the DUTY_ALLOCATION relation of Figure 5.4. the result of this
statement is as shown above.

(d) ‘‘Get employee numbers and dates for all employees working on
19860418 and at least one other date.’’

select Empl_No, Day- Empl_no Day
:;?an;l;; ‘{joL:;IOCATlON 123458 19860418
123458 19860420
(select Empl_No 123471 19860418
from DUTY_ALLOCATION 123471 19860419
where Empl_No in
(select Empl_No

from DUTY_ALLOCATION
where Day = 19860418)
group by Empl_No
having count (*) > 1)

For the DUTY_ALLOCATION relation of Figure 5.4, the result of this
st@gement is as shown above. Here, the inner nested select statement is used
to find those employees who are wotking on 19860418. For our sample
relation it gives the set {123457, 123458, 123471}. The where clause of the
second select statement is used to eliminate tuples of DUTY_ALLOCA-
TION where the Empl _No is not in the set. Only the tuples not so eliminated
are considered for the grouping. The having count(*) > 1 eliminates the
group of employees working only on 19860418. The result of the second
select statement is the set {123458, 123471}. The outer select statement is
used to provide multiple Day values per group W

5.3.7 Updates

SQL includes three update statements to modity the data. These are the insert, up-
date, and delete statements. In Section 5.3, we saw the syntax of these statements.
Here we give some examples of their usage.

Example 8.23

(a) ‘‘Insert a tuple in the BILL relation with Bill# 9234 for Table# 12 on
Day 19860419, where the waiter is 123456.""

insert into BILL (Bill#, Day, Waiter#, Table#)
values (9234, 19860419, 123456, 12)

The attributes given in the statement above are ordered differently from
those in the relation scheme. The values for these attributes are given in the
value clause. The remaining attributes are set to null.

(b) “Inset a DUTY_ALLOCATION tuple for Posting_No 321,
Empl_No 123456, Shift 2, and Day 86/04/22."

insert into DUTY_ALLOCATION
values (321, 123456, 19860422, 2)

236 Chapter § Relational Database Manipulation

The same nsertion can also be specified as:

insert into DUTY_ALLOCATION (Empl_No, Shift, Day,
Posting_No)
values (123456, 2, 19860422, 321) m

Note that in the second format of the insert statement, the attribute names may
appear in a different order than in the relation. The latter format of the insert state-
ment is used where data values for all the attributes are not being specified. The
attributes whose values are not explicitly specified are assigned the NULL value.

Example 5.24 (a) **Copy all tuples from DUTY_ALLOCATION into NEW_DUTY_AL-
LOCATION,” is specified as shown below. Here the attributes of NEW._
DUTY_ALLOCATION are those specified in a create statement for it. In

this example these attributes are compatible to those in DUTY_ALLOCA-
TION.

insert into NEW_DUTY_ALLOCATION:
select *
from DUTY_ALLOCATION

(b) ““Create a 'felation of duty records for shift 1.”

insert into SHIFT1_DUTY_ALLOCATION:
select *
from DUTY_ALLOCATION
where Shift = 1

(c) ““Increase the rate of pay of all employees by 10%."’

update EMPLOYEE
set Pay_Rate = 1.1 * Pay_Rate

(d) “‘Increase the rate of pay of waiters by 10%.”’

update EMPLOYEE
set Pay_Rate = 1.1 * Pay_Rate
where Skill = 'waiter’ :

(e) ‘“‘Remove employee record for Empl_No 123457.”

delete EMPLOYEE
where Empl_No = 123457

(f) “‘Remove all EMPLOYEE records and retain the relation.”
delete EMPLOYEE

(8) “‘Remove all EMPLOYEE records and drop the relation.”’
drop EMPLOYEE B

"~ 5.4 Views: SQL 237

54 Views: SQL

We have seen how users can manipulate the relations stored in the database. In
examples presented so far, we have been manipulating the conceptual or “‘physical”*?
relations. Such conceptual relations are sometimes referred to as base relations. Cor-
responding to each of these base relations there exists one (or more) physical rec-
ord(s) in one (or more) data file(s). Sometimes, for security and other concemns, it
undesirable to have all users see the entire relation. It would also be beneficial i
could create useful relations for different groups of users, rather than have th
manipulate the base relations. Any relation that is not a part of the physical datpb:

i.e., a virtual relation, is made available to the users as a view. It is poss ic
create views in SQL. A relation in a view is virtual since no corresponding p ‘,,3
relation exists. A view represents a different perspective of a base relation or Xgf
tions.

Therefore, if a user needs a particular view based on the base relations, it can be
defined using a query expression. To be useful, we assign the view a name and relate
it to the query expression: »

create view <view name> as <query expression>

A view is a relation (virtual rather than base) and can be used in query expres-
sions, that is, queries can be written using the view as a relation. Views generally
are not stored, since the data in the base relations may change. The base relations on
which a view is based are sometimes called the existing relations. The definition
of a view in a create view statement is stored in the system catalog. Having
been defined, it can be used as if the view really represented a real relation. How-
ever, such a virtual relation defined by a view is recomputed whenever a query refers
to it. ‘

Example 5.25 (a) For reasons of confidentiality, not all users are permitted to see the
Pay_Rate of an employee. For such users the DBA can create a view, for
example, EMP_VIEW defined as:

create yiew EMP_VIEW as
(select Empl_No, Name, Skill
from EMPLOYEE)

(b) A view can be created for a subset of the tuples of a relation, as in this
example. For assigning employees to particular jobs, the manager requires
a list of the employees who have not been assigned to any jobs:

create view FREE as

(select Empl_No
from EMPLOYEE)

3By physical we mean that the relation corresponds to some stored data. This data may not be stored asa table and may
actually be split horizontally or vertically and reside on onc or more storage devices (at one or more sites).

240

Chapter § Relational Database Manipulation

Views that involve a join may or may not be updatable. Such views are not
updatable if they do not include the primary keys of the basc relations. When the
view includes the primary keys of the base relations, the target base tuples may be
identifiable and hence updatable, provided the attributes included in the views are
derived using reversible operations and both the forward (from the attribute in the
base relation to the view) and reverse (from the attribute in the view to the base
relation) operations are known to the DBMS.

The need for allowing a view to update a relauon derived trom the join ot twe
relations can be illustrated by the following example.

Consider our EMPLOYEE(Empl_No, Name, Skill, Pay_Rate) relauon. Suppose
as a result of a reorganization of the database this relation is replaced by two relations
EMPL(Empl_No, Name, Skill) and PAYRATE(Empl#, Pay Rate), defined as fol-
lows: :

create table EMPL
(Empl_No integer not null,
Name char(25),
Skill char(20))

create table PAYRATE
(Empl# integer not null,
Pay_Rate decimal(10,2))

Appucations and users of the original relation EMPLOYEE continue using the
database as before since they are now provided with the following view:

create view EMPLOYEE Empl_w~No, Name, Skill, Pay_Rate as
(select Empl_No, Name, Skill, Hourly.Rate
from EMPL, PAYRATE
where Empl_No = Empl#)

The user of the EMPLOYEE relation should be insulated from this split and
allowed to contirue to use the database as they were accustomed to before the data-
base reorganization. This would include making appropriate updates. If this view
derived from a join could not be used to insert a tuple or make changes, then the
users of the relation EMPLOYEE are not insulated from the database reorganization.

Some problems could arise when a new record is inserted in the database using
a view instead of the base relation. One problem is that of assigning data values to
attributes not included in the view. A method of resolving this is to insert null values
for these attributes. However, this can be done only if the attributes in the base
relation are defined without the not null option. If a value of a nonprimary attribute
included in the view is not specified for insertion, then a null value is assigned to the
corresponding attribute in the base relation. Such insertion into the base relation via
the view can succeed provided the base attributes can accept a null value.

“The other problem is the possibility of a record inserted by a view disappearing
from that view. This is illustrated by the following example:

create view SOME_EMPLOYEE as
(select (*)
from EMPLOYEE
where Empl_No < 123470)

54 Views: SQL 241

The user of the view, SOME_EMPLOYEE, can insert the tupie ({23481, 'Pa-
van’, 'VP Developments’, 50.00) in this relation. However, once inserted, this rec-
ord will be inaccessible. Such anomalies could be avoided if the DBMS verifies that
any record that is allowed to be inserted in the database satisfizs the predicates of the
view.

The view to be used in updates must include the primary attributes of the base
relation, and these must have a nonnull value for insertion. If these conditions are
not satisfied, the record to be inserted will have null values for the primary attributes.
This cannot be allowed; in such cases the insertion will fail.

Any attribute in the view can be updated as long as the attribute is simple and
not derived from a computation involving two or more base relation attributes. The
view must, of course, include the primary attributes (or the attributes of a candidate
key), otherwise the record to be updated cannot be determined and the update will
fail. :

The view EMP_VIEW of Example 5.25a can be used to insert a new record in
the database. It is easy to see that no updates can be allowed through the followin
view, since it does not include the primary attribute:

create view QUALIFICATIONS as
(select Name, Skill
from EMPLOYEE)

When a view is defined on the natural join of a number of relations, the vie
if used for updates, is required to include the primary keys of all base relations.
Consider the view ELIGIBILITY(Empl_No, Posting_No, Skill), obtained as in Ex-
ample 5.8 by a join of EMPLOYEE and POSITION. It contains the primary attri-
butes of the two relations. A tuple such as (123481, 331, cashier) inserted using this
view could succeed provided no tuples with Empl_No = 123481 or Posting_No =
331 exist in the EMPLOYEE and POSITION relations. The result of the insertion
would be the tuples (1234581, null, cashier, null) and (331, cashier) in the two
relations.

On the other hand, consider the view ITEMIZED_BILL(Bill#, Dish_Descrip-
tion, Price, Qty, Price*Qty) created by a query such as the one given in Example
5.9 and involving the relations BILL, MENU, and ORDR. This view does not con-
tain the primary attributes of all its underlying relations. Consider the tuple (9234,
Club sandwich, 10.50, 2, 21.00) of ITEMIZED_BILL. An attempt to update Dish_.
Description will fail because the Dish# cannot be determined uniquely. (The club
sandwich may be offered as Disk# 100 on the lunch menu and as Dish# 400 on the
room service menu with different prices and both items may be included on the same
bill.) An attempt to update Price*Qty of the club sandwich from 21.00 to 27.00
cannot be unambiguously translated into a change in the base relations. Suppose a
change in Price*Qty is given along with a change in Price and Qty to be 27.00,
9.00, 3, respectively. It is then possible to determine, in the current state of the
example database, the actual tuples to be updated by examining all the tuples of
ORDR, MENU and the previous values of the tuple of ITEMIZED_BILL. Even
though this update is possible in this particular cxample, attempts to make such an
update will fail in most DBMSs. Finally, updating Bill# can succeed, although it is
debatable if such a change should be made through a view rather than the base
relation BILL. _

There remains a grey area in determining if an update tc a view is theoretically
sound under the following conditions: the view is derived from (a) a relation that is

&
»

\)
£

103\

N~

244

Chapter 5 Relational Database Manipulation

This allows us to declare a tuple variable and restrict it to assume values that
are tuples from the relation following the keyword is. This relation is the domain
(the set of tuple values) of the tuple variable. A reference to the tuple variable is a
reference to a tuple of the relation. The use of a tuple variable is similar to that in
tuple calculus wherein a tuple variable is defined by writing

<tuple variable> e <relation>

The use of a tuple variable is similar to the variable declaration in programming
languages where a variable is allowed to have, at a given time, a value from a set of
declared values (specified by the type). The tuple variable can thus be visualized as
a place marker in our relation.

Example 5.27 range of d is DUTY_ALLOCATION

range of e is EMPLOYEE

The tuple variables d and e, at any given time, refer to a tuple in the DUTY
ALLOCATION and EMPLOYEE relations, respectively.

In Chapter 4, we used RELATION_NAME[Attribute_Name] to refer to the val-
ues of an attribute of a relation. In QUEL this requires the use of qualified names:

RELATION_NAME Artribute_Name, or
Tuple_Variable Attribute_Name

The period is used to qualify the attribute by the relation. Note that in the convention
followed in Chapter 4, a group of attribute names could be specified within brackets.
There is no such simple grouping technique in QUEL.

Example 5.28 We assume that the tuple variable d has been declared as in Example 5.27.

Then,
d.Posting_No

refers to the value of the Posting_No attrbitue of a tuple in the DUTY_
ALLOCATION relation. ®&

Index Statement

The indexes are defined for an existing relation using the index statement. It specifies
the name of the secondary index to be built and the attributes from the relation that
are used for indexing. The purpose of creating a secondary index is to increase the
efficiency of secondary key retrieval. A relation could have any number of secondary
indexes created for it in addition to the index created on the primary key. All indexes
are destroyed when the relation is destroyed. Once created, an index is maintained
and used automatically by the DBMS. The syntax of the index statement is as fol-
lows:

56 QUEL _ 245

index on <relation name> is index_name
(attribute_name (,attribute_name, . . 1)

Example 5.29 Tne following statement creates an additional index named nameindex for
the EMPLOYEE relation using the Name attribute:

index on EMPLOYEE is nameindex (Name) B

Destroy Statement

The destroy statement is used in QUEL to eliminate a relation, index, or view (dis-
cussed in Section 5.7.9). The syntax of the destroy statement is:

destroy <name[,name, . . . |>

where each name is the name of an existing relation, index, or view.

Example 5.30 The following statement destroys the index named nameindex:

destroy nameindex B

Modify Statement

The modify statement is used to modify the storage structure of a relation from the
current one to that specified in the statement. The storage structures supported in
INGRES are B-tree, hash, ISAM, and heap. The compressed versions of these stor-
age structures are also supported; the compression is on the physical storage medium.
One example of a compression scheme is to suppress the trailing blanks of a char-
acter string. The syntax of the modify statement is as follows:

modify relation_name to storage_structurc [on attributel [order ascend-
ing|descending] [, . . . , 1]

Here the name of the relation is specified by relation_name and the new storage
structure by storage_structure. The on clause indicates the attribute(s) to be used for
ordering the relation. The order can be specified optionally as ascending or descend-
ing; ascending being the default. If the on clause is not specified, ascending order of
the relation by the first attribute is assumed.

Example 5.31 The following statement modifies the storage structure of the EMPLOYEE
relation to a compressed hash (chash) structure with Empl_No as the
hash key:

modify EMPLOYEE to chash on Emp/_ No B

248 Chapter 5 Relational Database Manipulation

Figure E Modified form of Figure C.
SALARY: result:

- Empl_No Pay_Rate Hours Empl_No Gross_Pay
123456 7.50 40.5 123456 303.50
123457 8.79 42.5 123457 373.58
123458 4.70 47.5 123458 223.25
123459 4.90 0.0 123460 225.60
123460 4.70 48.0 123461 432.00
123461 9.00 48.0 123471 597.80
123471 14.00 4.7 123472 659.75
123472 14.50 45.5 .

(i)

()

in part ii of Figure E (the second column heading I'as been renamed Gross.-
Pay instead of Pay_Rate*Hours):

range of s is SALARY
retrieve (s.Empl_No, Gross_Pay = s.Pay_Rate*s.Hours)
where s.Hours > 0.0 &

5.7.4 Muttiple Variable Queries

So far we have expressed queries using a single tuple variable and these queries
required information from a single relation. However, when we are required to re-
trieve information stored in multiple relations we need to use multiple variables—
one tuple variable for each relation. In this section we give examples of queries that
require the use of multiple variables.

Example 5.37 *‘Get the name of the waiter for table 17, identified as Waiter_Name.’’

range of e is EMPLOYEE

range of b is BILL

retrieve (Waiter_Name = e.Name)

where e.Empl_No = b.Waiter# and b.Table# = 17 =&

In this query we get the identifier for waiter assigned to table 17 and compare
1t with the employee identifier of employee tuples (the attribute Waiter# in BILL
refers to the same instance of the entity set employee as attribute Empl_No in EM-
PLOYEE). For the relations MENU and EMPLOYEE of Figures 5.2 and 5.4, the

- result of this querv is the name Ian.

5.7 Data Manipulation: QUEL 249

Example 5.38 “‘Get shift details of the employee named Pierre.’

range of d is DUTY_ALLOCATION

range of ¢ is EMPLOYEE

retrieve (d.Posting_No,d.Shift,d.Day)

where d.Empl_No = ¢.Empl_No and e.Emp_Name = 'Pierre’ W

The use of multiple variables is not restricted to different relations. Sometimes
it becomes necessary to declare multiple tuple variables over the same relation. Thus
if we want to compare the tuples of the same relation, we can have several tuple
variables ranging over the relation. We demonstrate this in the following example.

Example 5.39 “‘Find employees whose rate of pay is more than that of employee Jon."
In this query, at any given time, we need data on two employees: one
is fixed (the data for employee Jon) and the other will be another employee.
Thus, we need one tuple variable that can be used to refer to the tuple for
employee Jon, and another tuple variable for the other employee. (Imagine
that this second tuple variable will be used to scan the complete relation,
one tuple at a time.)

range of ¢ is EMPLOYEE
range of e; is EMPLOYEE

Name Pay_Rate

retrieve (e.Name,e.Pay_Rate) -an 9.00
where e.Pay_Rate > e,.Pay_Rate Pierre 14.00
Julie 14.50

and e;.Name = 'Jon'

The tuple variable e, has the data for employee Jon while at any given
instance the tuple variable e has data for another employee. The result of
this query is shown in the example. W

Example 5.40 “‘Get all pairs of Empl_No with the same Posting_No.””

Empl_No Empl_No

range of d is DUTY_ALLOCATION
range of d, is DUTY_ALLOCATION 123456 123461
retrieve (d.Empl_No, d,.Empl_No) 123456 123461
where d.Posting_No = d,.Posting_No

and (d.Empl_No < d,.Empl_No) W%

In this query we need to compare two tuples of the DUTY_ALLOCATION
relation. The condition (d.Empl_No < d,.Empl_No) guarantees that only unique em-
ployee pairs are retrieved. Employee 123458, who is posted twice to Posting_No
323, is not in the result since the Empl_Nos are the same. Also, by using this con-
dition we avoid including symmetrical tuples in the result. Thus the tuple (123461,
123456) is excluded from the result. (In Example 5.39 we did not need to specify
such a condition). Note, however, that the result shown above does have duplicate
tuples because Posting_No 321 is associated with Empl_No 123456 twice in the

Chapter § Relational Database Manipulation

- relation DUTY_ALLOCATION. We could use the unique option in the retrieve

statement to remove such duplicate tuples.
We next illustrate a query requiring the join of three relauons:

Example 5.41 Consider the requirement to generate the itemized bill for table 12 for the

5.7.5

date 19860419. This requires details from three relations, BILL, ORDR,
and MENU. The itemized bill can be generated using the statements given
below. The result of the query on the relations given in Figure 5.2 is also
shown.

range of b is BILL
range of m is MENU
range of o is ORDR
retrieve (b.Bill#,m.Dish_Description,m.Price, 0.Qty,
Dish_Total = m.Price*o.Qty)
where b.Bill# = o.Bill#
and o.Dish# = m.Dish#
and b.Table# = 12
and b.Day = 19860419

Bill# Dish_Description Price Oty Dish_Total

9234 Coffee 2.50 2 5.00
9234 Club sandwich 10.50 2 21.00

QUEL does not allow nested retrieve stailements (similar to the nested select
statement) and hence unlike SQL this method cannot be used to generate the itemized
bill.

Set Operations in QUEL

5.7.6

The set operations, for example union and intersection, are not supported by QUEL.
A number of queries require us to use some of these operators. In relational calculus
a tuple variable can be declared independent of the relation and thus can accept
values from different relations. In QUEL a qualified tuple variable appears in the
target list and since the tuple variable ranges over a single relation, we need some
explicit mechanism for creating unions. The same holds true for the other operations.
In Section 5.7.8 we introduce some of the data modification commands, and show
how they can be used to encode the set operations indirectly.

Aggregation Operators in QUEL

QUEL provides a number of aggregation operators to be used in expressions. These
allow a user to perform computations on the values of the relation’s attributes.

